Nell’ambito dei disturbi psichiatrici, i disturbi d’ansia rappresentano il terzo grande raggruppamento nosografico, accanto ai disturbi dell’umore e ai disturbi psicotici.

L’ansia è una variabile dimensionale e come tale prevede la valutazione di alcuni parametri qualitativi e quantitativi, quali ad esempio l’intensità e la durata della condizione ansiosa in rapporto agli stimoli esterni e/o interni, al fine di formulare un giudizio circa la presenza/assenza di “ansia patologica” e stabilire un eventualmente trattamento per la stessa.

Tra le molecole ad azione ansiolitica, le benzodiazepine (BDZ) rappresentano certamente la classe farmacologica maggiormente utilizzata, per le proprietà ansiolitiche, ipnotiche, miorilassanti e anticonvulsivanti. In relazione alla prova efficacia e alla bassa tossicità, le BDZ sono infatti attualmente indicate nel trattamento sintomatico a breve termine delle condizioni di ansia acuta e dell’insonnia.

Le BDZ agiscono potenziando la trasmissione di un neurotrasmettitore, l’acido γ-aminobutirrico (GABA), che a sua volta ha un effetto inibitore sui sistemi neurotrasmettoriali implicati nella biologia dell’ansia, in particolare le vie noradrenergiche e serotoninergiche. Il meccanismo d’azione delle BDZ a livello molecolare comporta uno specifico legame delle stesse al recettore A dell’acido γ-aminobutirrico (GABA_A), un complesso glicoproteico eteropentamerico che funziona in qualità di recettore canale permeabile agli ioni cloro. Una volta legate al
loro recettore, queste agiscono come modificatori allosterici positivi, variando la conformazione spaziale del complesso proteico e aumentando l’affinità recettoriale per il GABA. Poiché il cloro è l’unico ione permeante attraverso il recettore GABA, la sua attivazione “fissa” il potenziale di membrana a quello d’equilibrio. Il legame delle benzodiazepine potenzia pertanto gli effetti del GABA attraverso l’azione sul recettore. A dello stesso, responsabile dell’incrementata conduttanza agli ioni cloro della membrana cellulare neuronale, con conseguente inibizione dell’attivazione della stessa rete.

La struttura pentamericà del recettore GABA, (Fig. 1) è costituita da almeno tre tra le subunità glicoproteiche recettoriali α, β, γ, δ, ed ε, di cui esistono varie isoforme (almeno 6 α, 4 β e 3 γ), ciascuna avente una propria distribuzione nelle diverse aree cerebrali. I diversi sotto-tipi recettoriali che ne conseguono differiscono per il loro profilo farmacologico, rendendone possibile il controllo di funzioni diverse e una differente sensibilità alle molteplici azioni dei farmaci ansiolitici e anticonvulsivanti. La subunità α1 medierebbe gli effetti sedativi, amnestiche e anticonvulsivanti; la subunità α2 gli effetti ansiolitici; le subunità α3 e α5 sarebbero responsabili degli effetti miorilassanti e cognitivi (α5).

Sulla base dell’affinità recettoriale e della diversa attività intrinseca nel potenziare la conduttanza al cloro, è possibile distinguere ulteriormente le BDZ in agonisti totali, aventi una buona attività intrinseca (in quanto producono un effetto massimale sul recettore) e agonisti parziali, aventi invece una debole attività intrinseca (tale da non produrre un effetto massimale anche quando tutti i recettori sono occupati) e antagonizzanti gli effetti degli agonisti totali.

Le proprietà farmacocinetiche delle BDZ, in particolare modulo l’assorbimento e il metabolismo, influenzano mol- to il loro impiego clinico, in quanto ne determinano rapidità d’azione e durata dell’effetto farmacologico. In aggiunta alle caratteristiche chimiche delle molecole, un fattore certamente importante nel condizionare l’assor- bimento delle stesse è rappresentata dalla via di sommini- stro. La via orale è la più comune nel trattamento dell’ansia, in quanto le BDZ somministrate per questa via vengono quasi totalmente assorbite nel tubo gastroenterico, sebbene siano osservabili variazioni nella rapidità d’insorgenza dell’effetto (il diazepam ad esempio è uno fra i farmaci assorbiti più rapidamente, con un picco in 30-60 min., mentre molecole quali l’oxazepam entrano più lentamente in circolo, dopo circa 3 ore). Altri fattori possono influenzare la velocità d’assorbimento per via orale, come ad esempio la co-somministrazione di farmaci anticolinergici, che rallentano lo svuotamento gastroenterico. Meno frequente l’uso della via intramuscolare, caratterizzata da un assorbimento meno rapido e completo. Validà alternativa alla via orale è rappresentata dalla via rettale, che garantisce tempi di assorbimento più rapidi rispetto alla via intramuscolare, mentre si riserva la via endovenosa per il trattamento delle urgenze dello stato epilettico (diazepam) o in anestesiologia (lorazepam e midazolam), in quanto caratterizzata dall’immediatezza dell’effetto.

Una volta in circolo, la maggior parte delle BDZ si lega estesamente alle proteine plasmatiche e presenta spiccate proprietà lipofile che ne facilitano il passaggio attraverso le membrane biologiche, tra cui quelle del SNC. La durata dell’effetto farmacologico delle BDZ in seguito a somministrazione in singola dose dipende dalla velocità e dal grado di distribuzione ai tessuti, dal metabolismo epatico e dalla presenza di metaboliti attivi.

Il metabolismo epatico comprende reazioni di fase I (biotrasformazione), rappresentate da processi di ossido-riduzione operati dal sistema del citocromo P₄₅₀, e di fase II (coniugazioni), costituenti la coniugazione con acido glucuronico e determinanti la formazione di metaboliti inattivi e idrosolubili, successivamente escreti con le urine.
In relazione ai processi di metabolizzazione cui vanno incontro le BDZ è possibile suddividere: BDZ a lunga durata d’azione (emivita > 48 h); BDZ a durata d’azione intermedia (emivita 24-48 h); BDZ a breve durata d’azione (emivita < 24 h); BDZ a durata d’azione brevissima (emivita 1-7 h) (Tab. I).

Tale differenziazione ha permesso di classificare i composti in relazione al prevalente effetto ansiolitico e/o ipnoinducente, così come indicato nel British National Formulary (BNF)\(^1\), che distingue composti:

- ipnotici;
- ipnotici e ansiolitici;
- ansiolitici e farmaci utili nell’astinenza acuta da alcool\(^6\);
- ipnotici non benzodiazepinici (le cosiddette “z-drug”)

Le maggiori indicazioni cliniche delle BDZ riguardano il trattamento dei disturbi d’ansia, dell’insonnia, dello stato di male epilettico, dello stato ansioso in comorbilità ad altri disturbi, la premedicazione in anestesia, l’induzione di sedazione per l’esecuzione di manovre diagnostico-terapeutiche, l’induzione e il mantenimento dell’anestesia bilanciata\(^7\)\(^1\). Tale popolarità clinica delle benzodiazepine è stata attribuita all’ampio margine di sicurezza dei relativi indici terapeutici, alla ridotta presenza di eventi avversi seri e alla scarsa probabilità di creare dipendenza fisica\(^6\).

Per tali ragioni è possibile osservare trattamenti a lungo termine con benzodiazepine\(^7\), evenienza particolarmente correlata in letteratura con il sesso femminile, la depressione e il concomitante uso di ulteriori prescrizioni psicofarmacologiche\(^9\).

L’efficacia delle benzodiazepine in risposta ai sintomi ansiosi è sicuramente un dato certo e confermato fin dai primi utilizzi delle stesse nella pratica clinica\(^2\). Proprio l’influenza clinico-terapeutica delle benzodiazepine, in termini non solo di efficacia nella gestione dell’ansia\(^9\), ma più in generale di miglioramento nel funzionamento globale del paziente\(^2\), ne ha permesso l’ampia diffusione in tempi relativamente brevi\(^2\).

Eppure, nonostante l’evidenza di una buona risposta clinica\(^2\)\(^9\)\(^2\)\(^4\)\(^2\)\(^5\), secondo il British National Institute for Health and Clinical Excellence\(^2\), esiste una categoria di farmaci, gli antidepressivi, da privilegiare per quanto concerne il trattamento psicofarmacologico dei disturbi ansiosi\(^2\). A riguardo alcuni autori\(^2\)\(^5\), nella rivisitazione sistematica della letteratura da loro condotta, hanno valutato gli studi clinici controllati sul trattamento dei disturbi d’ansia (disturbo d’ansia generalizzato, disturbo di panico, fobia sociale e disturbo post traumatico da stress) pubblicati dal 1980 al 2006, al fine d’identificare gli studi di comparazione tra le BDZ e gli antidepressivi (AD), con particolare attenzione per quelli di nuova generazione. Dalle 969 pubblicazioni individuate sono stati selezionati 274 studi clinici controllati e randomizzati in doppio cieco, comprendenti 439 comparazioni. Di queste solamente 23 riguardavano le BDZ e gli antidepressivi, con 22 studi

![Tabella I](image)

<table>
<thead>
<tr>
<th>Farmaco</th>
<th>Emivita (ore)</th>
<th>Metaboliti attivi</th>
<th>Emivita (ore)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alprazolam</td>
<td>6-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromazepam</td>
<td>10-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brotizolam</td>
<td>4-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clobazam</td>
<td>10-30</td>
<td>Desmetilclobazam</td>
<td>35-45</td>
</tr>
<tr>
<td>Clonazepam</td>
<td>20-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desmetildiazepam</td>
<td>40-130</td>
<td>Oxazepam</td>
<td>5-15</td>
</tr>
<tr>
<td>Diazepam</td>
<td>20-60</td>
<td>Desmetildiazepam</td>
<td>40-150</td>
</tr>
<tr>
<td>Flurazepam</td>
<td>2-3</td>
<td>Desalchiflurazepam</td>
<td>40-100</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>8-24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lormetazepam</td>
<td>9-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midazolam</td>
<td>2-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrazepam</td>
<td>15-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxazepam</td>
<td>5-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prazepam</td>
<td>Profarmaco</td>
<td>Desmetildiazepam</td>
<td>40-150</td>
</tr>
<tr>
<td>Temazepam</td>
<td>8-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triazolam</td>
<td>2-5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
di comparazione tra BDZ e AD di vecchia generazione e un unico studio di comparison con venlafaxina, che mostra tra l’altro un’efficacia comparabile con il diazepam per quanto riguarda il trattamento del disturbo d’ansia generalizzato. Altri autori hanno più recentemente ripreso l’argomento, citandolo come uno tra i migliori esempi di un grande cambiamento degli schemi prescrittivi in psichiatria, in assenza di prove sufficienti per l’attuazione dello stesso. Non stupisce pertanto come sull’uso delle BDZ nel disturbo post-traumatico da stress (PTSD) vi siano ad esempio pochissimi studi clinici controllati, fatto questo realmente controverso se si considera invece il comune utilizzo delle stesse in pratica clinica, come riportato da alcuni autori che ne evidenziano di fatto il beneficio, relativo al miglioramento della sintomatologia ansiosa, dei residuali disturbi del sonno, dell’irritabilità e degli altri sintomi da aumentata vigilanza.

Proprio sui vantaggi derivati dal trattamento con BDZ, diverse altre evidenze presenti in letteratura suggeriscono il potenziale beneficio osservabile nella pratica clinica in seguito all’assunzione delle stesse nei pazienti affetti da un disturbo di panico, da fobia sociale, così come da disturbo d’ansia generalizzato (DAG), quadro clinico per il quale le linee guida redatte dal Canadian Network for Mood and Anxiety Treatments (CANMAT) sottolineano infatti l’importante ruolo di tali molecole nella gestione delle forme severe del disturbo, anche quando in comorbilità.

È proprio l’esperienza maturata nel tempo che rafforza la convinzione di non poter prescindere dall’uso delle BDZ nella pratica clinica, sia per l’ampio spettro d’azione delle stesse, che per la varietà di molecole esistenti all’interno di tale classe farmacologica, che permette di adattare in modo specifico il trattamento alle esigenze individuali del singolo paziente. Molecole quali il clonazepam, ad esempio, presentano proprietà peculiari di tipo anticonvulsivante, superiori rispetto ad altre molecole appartenenti alla stessa classe, o il bromazepam che, in relazione alla capacità di aumentare l’affinità del recettore per il proprio neurotransmettitore, determina una modifica dell’attività del neurone e influenza dunque il comportamento del network neuronale, trovando largo impiego in qualità di tranquillante minore, anticonvulsivante, sedativo e miorilassante.

A riguardo alcuni autori hanno sottolineato infatti i vantaggi del bromazepam nel trattamento del disturbo da attacchi di panico in corso di trattamento psicoterapico, poiché determina un più veloce miglioramento clinico, una minore incidenza di reazioni avverse e una migliore compliance al trattamento, evidenze queste strettamente correlate alle caratteristiche farmacocinetiche della molecola, che ne determinano un rapido assorbimento e conseguente rapida distribuzione ai tessuti dopo somministrazione orale, con raggiungimento della massima concentrazione plasmatica dopo circa un’ora ed emivita intermedia (20 ore circa), che nel complesso descrivono l’ottimale rapporto rischio-beneficio della molecola. Altri dati di letteratura evidenziano inoltre l’efficacia di bromazepam nelle manifestazioni ansiose legate ad un’affezione cardiovascolare, in cui la molecola si è mostrata in grado di migliorare alcuni segni funzionali cardiaco, quali tachicardia, palpitazioni e precordialgie, in assenza di interazioni farmacocinetiche dipendenti dall’induzione del sistema citocromale P₄₅₀. Numerosi altri studi riportano infine significativi miglioramenti delle performance psicomotorie, in assenza di alterazioni dello stato di vigilanza e dell’attenzione, dunque di un coinvolgimento diretto sul regolare funzionamento dei processi cognitivi.

Conflitto di interessi
Bibliografia

12 Lader M. Benzodiazepines revisited—will we ever learn? Addiction 2011;106:2086-109.

26 Fava GA. Unmasking special interest groups: the key to addressing conflicts of interest in medicine. Psychother Psychosom 2010;79:203-7.

